PHASE EQUILIBRIA IN THE SOLID STATE IN THE V9M06O40-Cr2O3 SYSTEM

J. Walczak and E. Filipek

INSTITUTE OF FUNDAMENTAL CHEMISTRY, TECHNICAL UNIVERSITY OF SZCZECIN, AL. PIASTÓW 42, 71-065 SZCZECIN, POLAND

Phase equilibria have been established in the solid state in the $V_9Mo_6O_{40}$ -Cr₂O₃ system. The results obtained have permitted to state that the system of interest, in the subsolidus area, is not a real two-component system in the whole component concentration range.

Keywords: phase equilibria, V9M05O40-Cr2O3 system

Introduction

 $V_9Mo_6O_{40}$, a compound existing in the V_2O_5 -MoO₃ system is well known, first of all, for its catalytic properties [1]. These properties account for an exhaustive study of the system [1–6]. The other component of the system under study – Cr_2O_3 is a well-known catalyst, too [7]. No reliable information on the behaviour of Cr_2O_3 towards $V_9Mo_6O_{40}$ has been found in the available literature so far, and this has induced us to undertake a study on the system. It seemed interesting to find out, in the first place, what kind of phase remains at equilibrium in the solid state in the $V_9Mo_6O_{40}$ - Cr_2O_3 system.

V₉Mo₆O₄₀ crystallizes in the monoclinic system [2, 3] and, structurally, it belongs to a homologous series, M_nO_{3n-1} [2]. In that phase, 1/9 of the vanadium atoms occur in the form of V⁴⁺ [4]. V₉Mo₆O₄₀ melts congruently, its melting point, as given by different authors, is within the range 635° - $677^{\circ}C$ [1, 4–6]. According to our findings, V₉Mo₆O₄₀ melts at $640^{\circ}\pm10^{\circ}C$. Its density is 3.86 g/cm³ [5]. The components of the V₂O₅-MoO₃ system, beside V₉Mo₆O₄₀, form, as well, an α phase, iso-structural with V₂O₅ and being a substitution solid solution of MoO₃ in V₂O₅, with a general formula (V_{1-x}Mo_x)₂O₅, where 0 < x < 0.3 [4, 8, 9].

The properties and structure of chromium(III) oxide are known well, too. Cr_2O_3 crystallizes in the rhombohedral system, it is isomorphous with α -Al₂O₃

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest and forms solid solutions with the latter. It, too, is a compound melting congruently. The melting temperatures published for Cr_2O_3 are rather scattered, from 1990° to 2435°C [2, 11, 12]. The oxide reacts with V₂O₅ to form two compounds, CrVO₄ and Cr₂V₄O₁₃. CrVO₄ melts incongruently at 865°C, whereas Cr₂V₄O₁₃ is decomposed in the solid phase into CrVO₄ and V₂O₅ at 640°C [13]. Cr₂O₃ reacts with MoO₃, giving rise to Cr₂(MoO₄)₃ to be decomposed in the solid state into oxides with simultaneous sublimation of MoO₃ [14]. The decomposition starts at 810°C.

The components of the Cr_2O_3 - V_2O_5 - MoO_3 system have the ability to form a solid solution in which the matrix is $Cr_2V_4O_{13}$ whereas MoO_3 is incorporated into the crystal lattice of the compound in the place of V^{5+} . The charge compensation takes place, in all probability, through reduction of an equivalent number of Cr^{3+} ions to Cr^{2+} , thus the formation of phases of the type

 $Cr_{2-x}^{3+}Cr_{x}^{2+}V_{4-x}Mo_{x}O_{13}$, where $0.500 < x_{max} < 0.581$ [15]

can be accounted for.

The system components react with each other to yield $CrVMoO_7 - a$ compound melting incongruently at 820°C [16].

Experimental

In order to study phase equilibria being established in the $V_9Mo_6O_{40}$ -Cr₂O₃ system, 20 samples of oxides with compositions corresponding to the whole component concentration range were prepared (Table 1). The oxide mixtures with the given composition were homogenized by grinding, then pelletized and calcined under conditions depending on the Cr₂O₃ content in the samples. Thus, up to a content of 72.50 mol% of Cr₂O₃ in terms of the components of the system under investigation, the samples were heated as follows:

 $500^{\circ}C (48 h) \rightarrow 550^{\circ}C (48 h) \rightarrow 570^{\circ}C (24 h) \rightarrow 570^{\circ}C (48 h) \rightarrow 570^{\circ}C (24 h).$

On the other hand, samples containing 75.00 - 81.00 mol% of Cr_2O_3 were heated as follows:

 $500^{\circ}C (48 h) \rightarrow 550^{\circ}C (48 h) \rightarrow 570^{\circ}C (24 h) \rightarrow 590^{\circ}C (24 h) \rightarrow 610^{\circ}C (24 h) \rightarrow 610^{\circ}C (24 h)$ $\rightarrow 610^{\circ}C (24 h).$

In other ranges of the component concentration, the samples were heated in the following cycles:

 500° C (48 h) $\rightarrow 550^{\circ}$ C (48 h) $\rightarrow 570^{\circ}$ C (24 h) $\rightarrow 570^{\circ}$ C (48 h) -.. 650° C (24 h) $\rightarrow 700^{\circ}$ C (24 h).

These conditions of preparation were established in preliminary studies, which revealed that after the heating cycles assumed, the preparations achieved the equilibrium state. During the preliminary study, after each heating cycle, a mass loss check was made, yet no substantial change in the weight of the samples was found and consequently record of it was relinquished in the main investigations. Samples subjected to preliminary studies contained in their initial mixtures: 50.00; 75.00; 80.00; 85.00 and 90.00 mol% of Cr_2O_3 in terms of the components of the system.

	The Cr ₂ O ₃		
No	content/	The phases found [*]	Colour
	mol%		
1	2	3	4
1	10.00	V9M06O40, CrVM0O7, V2O5(s.s.) - v. little	of graphite
2	20.00	V9M06O40, CrVM0O7, V2O5(s.s.) - v. little	of graphite
3	30.00	V9M06O40, CrVM0O7, V2O5(s.s.)	brown
4	40.00	CrVMoO7, V9M06O40, V2O5(s.s.)	brown
5	50.00	CrVMoO7, V9M06O40, V2O5(s.s.)	dark olive
6	60.00	CrVMoO7, V9M05O40, V2O5(s.s.)	dark olive
7	70.00	CrVM0O7, V2O5(s.s.), V9M06O40	brown-olive
8	72.50	CrVMoO7, V2O5(s.s.)	brown-olive
9	75.00	CrVMoO7, V2O5(s.s.), Cr2V4O13(s.s.)	brown-olive
10	77.50	CrVMoO7, Cr2V4O13(s.s.), V2O5(s.s.)	brown-olive
11	78.95	CrVMoO7, Cr ₂ V ₄ O _{13(s.s.)}	yellow-brown
12	80.00	$CrVMoO_{7}$, $Cr_2V_4O_{13(s.s.)}$, $CrVO_4$ – little	yellow-brown
13	81.00	CrVMoO7, CrVO4, Cr2V4O13(s.s.)	yellow-brown
14	81.82	CrVM0O7, CrVO4	yellow-brown
15	82.50	CrVMoO7, CrVO4, Cr2O3 – little	brown-olive
16	85.00	CrVMoO7, CrVO4, Cr2O3	brown-olive
17	87.50	CrVMoO7, CrVO4, Cr2O3	brown-olive
18	90.00	CrVM0O7, Cr2O3, CrVO4	olive
19	92.50	CrVMoO7, Cr2O3, CrVO4	green-olive
20	95.00	CrVM0O7, Cr2O3, CrVO4	green

Table 1 The V₉Mo₆O₄₀-Cr₂O₃ system

Results from the X-ray phase analysis of samples at equilibrium and their colours

* The sequence of recording the phases results from their decreasing contents in a given sample.

Differential thermal analysis (DTA) of the samples at equilibrium was accomplished with a derivatograph of F. Paulik-J. Paulik-L. Erdey type (MOM Budapest) in the temperature range 20°-1000°C. X-ray powder diffraction studies were made with the aid of a diffractometer $HZG-4/A_2$ using a cobalt tube as a source of radiation. X-ray phase analysis was made using data included in the ASTM cards [17] and in references [1, 13, 16].

Results and discussion

Table 1 shows the results of the X-ray phase analysis of all the preparations being at equilibrium as well as their colours. The results indicate that Cr_2O_3 does not remain at permanent equilibrium with $V_9Mo_6O_{40}$. X-ray phase analysis of preparations containing up to 72.50 mol% of Cr_2O_3 , in terms of components of the system under study, has shown that the preparations were a mixture of three phases, i.e. $V_9Mo_6O_{40}$, $CrVMoO_7$ and $V_2O_{5(s.s.)}$, respectively. It implies that Cr_2O_3 with contents up to 72.50 mol% reacts to completion yielding $CrVMoO_7$, while excessive MoO_3 , besides forming the compound, $V_9Mo_6O_{40}$ in a reaction with V_2O_5 , is incorporated in the V_2O_5 lattice to form a solid solution. It means that $V_9Mo_6O_{40}$ is a phase which remains at permanent equilibrium with $CrVMo-O_7$ and $V_2O_{5(s.s.)}$ only in that concentration range.

Fig. 1 Diagram of phase equilibria at the solid state in the V9M06O40-Cr2O3 system

In preparations containing above 72.50 mol% of Cr_2O_3 there appears, beside $CrVMoO_7$ and $V_2O_{5(s.s.)}$ as a stable phase, a solid solution of MoO_3 in $Cr_2V_4O_{13}$. The three phases remain at equilibrium only at Cr_2O_3 contents up to 78.95 mol%.

Further increase in the Cr_2O_3 content in the system leads to $CrVO_4$ as a phase being at equilibrium. In that component concentration range, i.e. to 81.82 mol% of Cr_2O_3 , the following phases remain at equilibrium: $CrVM_0O_7$, $Cr_2V_4O_{13(s.s.)}$ and $CrVO_4$, respectively.

In the other component concentration range, i.e. above 81.82 mol% of Cr_2O_3 it is CrVMoO₇, CrVO₄ and Cr₂O₃ that remain at permanent equilibrium.

Figure 1 shows phase equilibria being established in the solid state in the $V_9Mo_6O_{40}$ - Cr_2O_3 system. The temperature range of subsolidus area has been established on the basis of the onset temperature of the first effect recorded on the DTA curves of the preparations at equilibrium. For further confirmation of the existence range of the subsolidus area, the samples at equilibrium with 20.00; 60.00; 75.00; 80.00 and 85.00 mol% of Cr_2O_3 were additionally heated for 3 hours at a temperature somewhat lower than the temperature of the solidus line to be suddenly quenched to ambient temperature. The phase composition of the preparations obtained in this way did not deviate from the phase composition of samples being at equilibrium, gradually cooled to ambient temperature.

The experimental results show that the system $V_9Mo_6O_{40}$ -Cr₂O₃, in the subsolidus area, is not a real two-component system in the whole component concentration range. This fact is confirmed by the presence of fields in the area in which three solid phases remain at equilibrium.

References

- 1 R. H. Munch and E. D. Pierron, J. Catal., 3 (1964) 406.
- 2 H. Eick and L. Kihlborg, Acta Chem. Scand., 20 (1966) 1658.
- 3 R. C. T. Slade, J. Solid State Chem., 82 (1989) 65.
- 4 A. Bielañski, K. Dyrek, J. Pozniczek and E. Wenda, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 19 (1971) 507.
- 5 R. H. Jarman, P. G. Dickens and A. J. Jacobson, Mater. Res. Bull., 17 (1982) 325.
- 6 N. Strupler and A. Morette, Chim. Miner., 260 (1965) 1971.
- 7 T. V. Rode, Kislorodnye soedineniya khroma i khromovye katalizatory, Moskva 1962, AN SSSR.
- 8 V. L. Volkov, G. Sh. Tynkachewa, A. A. Fotiev and E. V. Tkachenko, Zh. Neorg. Khim., 17 (1972) 2803.
- 9 L. Kihlborg, Acta Chem. Scand., 21 (1967) 2495.
- 10 C. Rao and C. Hoffman, J. Sci. Ind. Res., 15 (1956) 663.
- 11 V. A. Ryabin and M. V. Kireeva, N. A. Berg, Neorganicheskiye soedineniya khroma, Leningrad 1981, Izd. Khimiya.
- 12 M. Hamelin, Rev. Met., 47 (1950) 324.
- 13 J. Walczak and E. Filipek, J. Thermal Anal., 35 (1989) 69.
- 14 J. Walczak, M. Kurzawa and E. Filipek, Thermochim. Acta, 150 (1989) 133.
- 15 J. Walczak and E. Filipek, Thermochim. Acta, 161 (1990) 239.

- 16 J. Walczak and E. Filipek, Thermochim. Acta, 150 (1989) 125.
- 17 Joint Committee of Powder Diffraction: 5-508; 6-0504; 9-387; 16-256; 18-851; 19-813; 20-1377; 34-527.

Zusammenfassung — Im Festzustand des Systemes $V_9Mo_6O_{40}$ - Cr_2O_3 wurden Phasengleichgewichte ermittelt. Die erhaltenen Resultate lassen darauf schließen, daß das fragliche System im Subsolidus-Gebiet über den gesamten Konzentrationsbereich kein reelles Zweikomponentensystem ist.